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phenomenologically viable spectra compatible with perturbative gauge coupling unification.

The minimal model interpolates continuously between pure anomaly mediation and gauge

mediation with a messenger scale of order 10 TeV. It is also possible to have non-minimal

models with more degenerate specta, with some squarks lighter than sleptons. These

models reduce to the MSSM at low energies and incorporate a natural solution of the µ

problem. The minimal model has four continuous parameters and one discrete parameter

(the number of messengers). The LEP Higgs mass bound can be satisfied in the minimal

model by tuning parameters at the GUT scale to one part in 50.
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1. Introduction

Anomaly-mediated supersymmetry breaking (AMSB) [1, 2] is an attractive mechanism

for breaking supersymmetry (SUSY) without flavor problems. In this mechanism, SUSY

is broken by the VEV of a supergravity auxiliary field 〈Fφ〉. The supercovariance rules

that govern the couplings of this auxiliary field are easily summarized: φ = 1 + θ2Fφ is a

superconformal compensator, a chiral superfield with conformal dimension 0 and conformal

U(1)R charge +2
3

(in a normalization where the superpotential has R charge +2). Matter

and gauge chiral superfields have conformal dimension equal to their mass dimension, and

vanishing conformal R charge. From this it is clear that the coupling of the conformal

compensator is independent of flavor, and therefore anomaly mediation predicts a flavor-

blind SUSY breaking spectrum. The SUSY breaking masses depend on scale via the

renormalization group (RG), and anomaly mediation defines a preferred trajectory for

all SUSY breaking couplings in terms of a single SUSY breaking scale 〈Fφ〉 ∼ 10 TeV.

Unfortunately, the slepton mass parameters are negative in the minimal supersymmetric

standard model (MSSM). In this paper, we propose a solution to this problem based on an

idea due to Nelson and Weiner [3], which built on early work by Pomarol and Rattazzi [4].

Nelson and Weiner considered a theory with extra vectorlike fields P and P̃ and added a

coupling of the form1

∆L =

∫

d4θ
φ

φ†
cP P̃ + h.c. (1.1)

= c〈Fφ〉
†

∫

d2θ P P̃ + c|〈Fφ〉|
2PP̃ + h.c. (1.2)

1Couplings of this form with P and P̃ replaced by the MSSM Higgs fields contribute to the Giudice-

Masiero mechanism for generating the MSSM µ term [5].
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We see that this gives a SUSY invariant superpotential mass term for P and P̃ , as well

as a SUSY-violating ‘B-type’ scalar mass term. Diagonalizing the scalar mass matrix, we

find that the scalar mass-squared eigenvalues are positive for |c| > 1. Assuming |c| ∼ 1,

this is a supersymmetry breaking threshold at the scale 〈Fφ〉, which gives SUSY breaking

threshold corrections of order g2〈Fφ〉/16π
2 to SUSY breaking masses, taking them off the

AMSB RG trajectory. As shown in ref. [3], the leading threshold corrections to the scalar

masses vanish, and the slepton mass-squared terms are therefore still negative at the scale

〈Fφ〉. One can get positive slepton masses at the weak scale only by having a large number

of messengers (5 or more 5⊕ 5̄’s), which generates large gaugino masses at the messenger

scale ∼ 10 TeV, which in turn generates positive slepton masses from running between the

messenger scale and the weak scale. However, the resulting theories generally have charged

slepton LSP, and the large number of messengers destroys perturbative unification.

In this paper we consider a very simple extension of this model that has a more

attractive phenomenology. The model consists of the MSSM plus a singlet S in addition

to the vectorlike fields P , P̃ . We include the most general interactions with dimensionless

coefficients. The additional terms in the Lagrangian are therefore

∆L =

∫

d4θ
φ†

φ

(

1
2
cSS2 + cP PP̃

)

+ h.c.

+

∫

d2θ

[

λS

3!
S3 + λP SPP̃

]

+ h.c.

(1.3)

A superpotential coupling of the form SHuHd is assumed to be absent.2 For |cS | < 1 the

potential for S has a local maximum at S = 0, so 〈S〉 6= 0. This gives rise to a more general

threshold with none of the problems of the minimal model.

2. The threshold

In this section, we compute the SUSY breaking from the threshold. The scalar potential

that arises from eq. (1.3) is

V =
∣

∣

∣
cS〈F

†
φ〉S + 1

2
λSS2 + λP PP̃

∣

∣

∣

2

+ |cP 〈F
†
φ〉 + λP S|2(|P |2 + |P̃ |2)

+ |〈Fφ〉|
2
(

1
2
cSS2 + cP PP̃

)

+ h.c.

(2.1)

The potential is quadratic in P , P̃ , so we look for a minimum with 〈P 〉 = 〈P̃ 〉 = 0. In

the appendix, we minimize the potential for real couplings and VEVs. We show that the

global minimum preserves CP for

cS < 0 (2.2)

2For example, it may be forbidden by a discrete R symmetry S(θ) 7→ −S(iθ), P (θ) 7→ +P (iθ), P̃ (θ) 7→

+P̃ (iθ), Hu(iθ) 7→ +Hu(iθ), Hd(iθ) 7→ −Hd(iθ), uc(θ) 7→ −uc(iθ), with all other fields even.
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and the we obtain

〈S〉 = −
〈Fφ〉

2λS

(

3cS +
√

cS(cS − 8)
)

, (2.3)

〈

FS

S

〉

=
〈Fφ〉

4

(

−cS +
√

cS(cS − 8)
)

. (2.4)

This gives rise to a mass term for P , P̃ that can be conveniently written as

∆L =

∫

d2θ φMPP̃ + h.c., (2.5)

where

M = M [1 + θ2r〈Fφ〉], (2.6)

In this parameterization r 6= 0 parameterizes the deviation from a supersymmetric thresh-

old, i.e. r = 0 gives a pure anomaly-mediated spectrum below the messenger scale. The

model of Nelson and Weiner has r = −2. We then have

M = cP (1 + X)〈Fφ〉, (2.7)

r = −
2 + 1

4
X

(

cS + 4 −
√

cS(cS − 8)
)

1 + X
, (2.8)

where

X =
λP 〈S〉

cS〈Fφ〉
= −

λP

2cP λS

(

3cS +
√

cS(cS − 8)
)

. (2.9)

This shows that all values of M and r are allowed, since 1 + X can be small and have

either sign. (Note that this does not require any Yukawa couplings to be large.) In order

to avoid a negative mass eigenvalue for the scalars P , P̃ at the minimum, we require

|(r + 1)〈Fφ〉| < |M |. (2.10)

We now evaluate the threshold contributions to the standard model fields due to the P

fields. The general formulas can be obtained from the methods of refs. [6, 7]. The soft SUSY

breaking terms can be parameterized by higher superspace components of dimensionless

couplings via

m2
0 = −

∂

∂θ2

∂

∂θ̄2
ln Z, (2.11)

m1/2 =
1

g

∂

∂θ2
g, (2.12)

λA = −2
∂

∂θ2
λ, (2.13)

where all couplings are taken to be real superfields. In the present model, all SUSY breaking

is contained in the conformal compensator and the P , P̃ mass term, so we have

∂

∂θ2
=

1

2
〈Fφ〉

(

r
∂

∂ ln M
−

∂

∂ ln µ

)

. (2.14)
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Note that this implies the presence of mixed anomaly- and gauge-mediated terms for scalar

masses, as first pointed out in ref. [4]. In this way, we can obtain expressions for the soft

masses at the scale M in the effective theory where P and P̃ have been integrated out:

m2
0(M) =

1

4
〈Fφ〉

2

{

−r2∂γ′

∂g′i
β′

i + 2r(r + 1)
∂γ

∂gi
β′

i − (r + 1)2
∂γ

∂gi
βi

}

, (2.15)

m1/2(M) =
1

g
〈Fφ〉

[

rβ′
g − (r + 1)βg

]

, (2.16)

A(M) = −
1

λ
〈Fφ〉

[

rβ′
λ − (r + 1)βλ

]

. (2.17)

Here primed (unprimed) quantities refer to the theory above (below) the scale M . The

anomalous dimensions are defined by

βi =
∂gi

∂ ln µ
, γ =

∂ ln Z

∂ ln µ
. (2.18)

The expression for the scalar masses can be simplified in the case of fields with no Yukawa

couplings to messengers, for which γ′ = γ. We then have

m2
0(M) = m2

0AMSB +
1

4
r(r + 2)〈Fφ〉

2 ∂γ

∂gi
∆βi, (2.19)

where

m2
0AMSB = −

1

4
〈Fφ〉

2 ∂γ

∂gi
βi. (2.20)

and ∆β = β′ − β. Similarly, we can write

m1/2(M) = m1/2AMSB +
r

g
〈Fφ〉∆βg (2.21)

A(M) = AAMSB −
r

λ
〈Fφ〉∆βλ. (2.22)

These expressions explicitly display the fact that the soft masses reduce to the AMSB

values in the limit r → 0. The scalar masses (but not gaugino masses and A terms) also

reduce to their AMSB values for r → −2, as in the model of Nelson and Weiner. In the

generalized model, all soft masses reduce to the gauge-mediated values in the limit r → ∞

with r〈Fφ〉 held fixed. For general r, the SUSY breaking spectrum in this model interpolates

continuously between anomaly mediation and gauge mediation with a messenger scale of

order 10 TeV (assuming all dimensionless couplings are order unity).

As with the case of pure gauge- and anomaly-mediated SUSY breaking, eqs. (2.15)–

(2.17) are leading order results in a power series with subleading corrections suppressed

by O((〈Fφ〉/M
2)2) and O((r〈Fφ〉/M

2)2). In the present class of models, it is natural to

have M ∼ 〈Fφ〉, r〈Fφ〉, where these effects may be important. They have been calculated

for the case of pure gauge mediation, where they are known to be numerically small unless

the SUSY breaking is tuned to be close to the instability limit F/M2 → 1 [8]. Because

these corrections are UV finite, they do not depend on the regulator, and therefore depend
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on the conformal compensator only through the superfield mass of the messengers (see

eq. (2.5)). We can therefore use the results for gauge mediation with the replacement

F/M2 → (r + 1)〈Fφ〉/M
2. Since the stability limit is |(r + 1)〈Fφ〉/M

2| < 1 here as well,

the corrections are small in the absence of fine tuning.

3. The µ problem

In the context of AMSB, we cannot get a phenomenologically acceptable Higgsino mass by

adding a µ term

∆L =

∫

d2θ µφHuHd + h.c. (3.1)

since this gives rise to B ∼ 〈Fφ〉 ∼ 10 TeV. One possibility is the NMSSM, where the VEV

of a singlet gives the µ term. However, it is nontrivial to get a negative mass-squared term

for the singlet. Here we briefly discuss another possibility within the MSSM that gives a

more minimal model.

We consider a mechanism originally proposed by Randall and Sundrum in ref. [1]. We

show that this mechanism can be made natural with appropriate broken symmetries. We

add a term to the Lagrangian of the form

∆LRS =

∫

d4θ c(Y + Y †)
φ†

φ
HuHd + h.c. (3.2)

Here we have included factors of φ by canonically normalizing Hu,d but not the field Y .

Expanding this out, we obtain the potential terms

∆LRS =
[

−c|Fφ|
2(Y + Y †) + c(F †

φFY − h.c.)
]

HuHd + h.c.

+
[

cF †
φ(Y + Y †) + cF †

Y

]

∫

d2θ HuHd + h.c.

(3.3)

We see that we can naturally get a vanishing Bµ term at tree level if

〈Y + Y †〉 = 0 (3.4)

and all couplings and VEV’s are real. This is natural by CP invariance, and we then obtain

an effective µ term

µ = c〈FY 〉. (3.5)

The Bµ term is generated from AMSB, giving rise to a model with only one additional

parameter.

It is crucial that the Y appears in the combination Y + Y †. This is natural if the field

Y is invariant under a shift symmetry

Y 7→ Y + iλ (3.6)

– 5 –
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where λ is a real constant. We must also forbid a term of the form

∆L =

∫

d4θ c′
φ†

φ
HuHd + h.c. (3.7)

The discrete R symmetry

Y (θ) 7→ −Y (iθ), Hu(θ) 7→ Hu(iθ), Hd(θ) 7→ −Hd(iθ) (3.8)

forbids the unwanted term eq. (3.7), and also has the feature that the lowest component

of Y is odd, while FY is even.3 The VEV for Y that we need is therefore protected by this

symmetry. In order to make the Yukawa couplings invariant, the standard model fields

must also transform under the discrete symmetry, e.g.

uc(θ) 7→ −uc(iθ), (3.9)

with all other fields even.

This shows that the term eq. (3.2) with Y treated as a spurion provides a viable µ

term in AMSB that is natural by symmetries. Effectively, it justifies the inclusion of a

running µ term into the AMSB RG trajectory. It does not explain why the µ term is the

same size as other SUSY breaking terms. We leave this for future work.

4. Spectrum and phenomenology

We now discuss the SUSY breaking spectrum that results from this model. We assume that

the messengers come in complete SU(5) multiplets, so that the gauge coupling unification

in the MSSM is not an accident. The simplest possibility is then that the messengers

consist of N copies of 5 ⊕ 5̄. For perturbative unification, we require N ≤ 4. Under the

standard model gauge group, these decompose into a doublet and a triplet, each of which

can have different couplings cP and λP (see eq. (1.3)). These give rise to different values

for r for the doublet and triplet messengers, and hence different SUSY breaking masses

for colored and uncolored superpartners. We assume for simplicity that the N messengers

have the same coupling (e.g. there can be an unbroken SU(N) symmetry in the messenger

sector). This can be relaxed to obtain even more general spectra.

For large r, the spectrum is close to that of gauge mediation. However, because SUSY

breaking is driven by anomaly mediation, the gravitino mass is naturally of order 〈Fφ〉,

alleviating the gravitino problem. This may not be large enough for large r, but it is possible

(and natural) to have masses for the gravitino and other gravitational moduli that are

parametrically larger than 〈Fφ〉 with SUSY breaking dominated by anomaly mediation [9].

The simplest model is completely specified at high energies by M , Fφ, r2, r3, N , µ,

and yt. There are two low-energy constraints from the known values of the Higgs VEV

v2 = v2
u +v2

d and the top quark mass, so this model has four continuous parameters and one

discrete parameter. Of these, the dependence on the messenger scale M is only logarithmic,

3This symmetry also forbids unwanted couplings between the singlet S and the Higgs fields if S trans-

forms as S(θ) 7→ −S(iθ).
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since it just sets the scale for the RG running down to the weak scale. Explicit formulas

for soft masses are presented in appendix B.

For illustration, the spectrum of superpartner masses at the messenger scale is shown

in figure 1 as a function of r = r2 = r3 for M = 50 TeV, for N = 1 and N = 4 respectively.

For r < 0 we can obtain positive slepton mass-squared parameters, but the right-handed

sleptons are lighter than the bino, giving rise to charged slepton LSP. We therefore focus

our attention on r > 0. The spectra are still qualitatively similar to gauge- and anomaly

mediation in the sense that colored superpartners are heavier than uncolored ones. For

example, obtaining positive slepton mass-squared parameters requires r >∼ 1, which then

implies mq̃ >∼ 5mℓ̃.

Quite different possibilities exist if r2 6= r3. In figure 2 we show an example spectrum

with N = 1 and r3 = −1. We again require r > 0 to avoid a slepton LSP. We see that

the spectrum is more degenerate, and the SU(2)W contribution to superpartner masses

is comparable to SU(3)C . For r2 >∼ 2, the superpartners charged under SU(2)W are the

heaviest, followed by the gluino, then right-handed scalars and the Bino. Such spectra open

up new regions of SUSY parameter space that may be interesting to explore. These spectra

have a light stop, and therefore requires an additional contribution to the Higgs quartic.

Possibilities include a “fat” Higgs [10] or large D terms from exotic gauge interactions [11].

We give some representative points in parameter space in table 1, assuming r2 = r3

for simplicity. At the scale M we evaluate the soft-breaking parameters using eqs. (2.15)–

(2.17), and evolve them down using MSSM RG equations to the stop mass scale mt̃. (Since

we have small mixing in the stop sector, we simply use the common stop mass.) At the scale

mt̃, we determine the µ parameter by minimizing the one-loop effective potential. This

includes the largest 2-loop corrections to the effective potential because we use a value

of yt that includes 1-loop QCD corrections [12]. We then add by hand the 2-loop QCD

threshold corrections to the higgs mass m2
h0 , although this is a small correction (< 2 GeV)

for small stop mixing.

The spectra given in table 1 satisfy all experimental constraints. The most severe

constraint is the LEP Higgs mass bound mh0 > 114.4 GeV. Because we do not have large

mixing in the stop-sector, we require mt̃ ∼ 1 TeV to satisfy the Higgs mass bound, and the

experimental constraints on the sleptons and LSP are easily satisfied. As we have large

stop masses, these models are fine-tuned.

We quantify the fine tuning by the sensitivity of the Higgs to varying parameters at

the GUT scale. The Higgs mass is quadratically sensitive to the stop mass, but this is

not a fundamental parameter in this model. The most sensitive fundamental parameter is

g3(MGUT), so we define

Fine tuning ≡
g3(MGUT)

v

∂v

∂g3(MGUT)
=

∂ ln v

∂ ln g3(MGUT)
. (4.1)

Because the sensitivity is through the stop mass, the tuning increases quadratically with

the stop mass, while the lightest Higgs mass increases only logarithmically. This means

that the fine tuning increases exponentially as a function of the lightest Higgs mass. This
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Figure 1: Spectrum of superpartner masses as a function of r = r2 = r3 for M = 50 TeV, and

N = 1 (top) and N = 4 (bottom). For gaugino masses we plot |M | and for scalar masses, we plot

|m2|1/2 × sgn(m2). All masses are in units of Fφ/(16π2).

phenomenon is intrinsic to the MSSM, not just the present model, and is illustrated in

figure 3. Note that the fine-tuning is somewhat less for a large number of messengers, since

QCD is non asymptotically free in this case, and therefore the sensitivity to g3(MGUT) is

reduced.
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Figure 2: Spectrum of superpartner masses as a function of r2 for N = 1, M = 50 TeV, and

r3 = −1. For gaugino masses we plot |M | and for scalar masses, we plot |m2|1/2 × sgn(m2). All

masses are in units of Fφ/(16π2).

Figure 3: Fine-tuning in g3(MGUT) as a function of lightest Higgs mass mh0 for models with r > 0

for N = 3 and 4.

5. Conclusion

We have constructed a well-motivated minimal model that naturally breaks SUSY in a
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Point 1 Point 2

N 1 4

r 14.6 6.45

Fφ 7.19 TeV 6.34 TeV

M 201 TeV 81 TeV

µ 485 425

tan β 17.1 17.7

mh0 115 115

ml̃L 380 330

ml̃R 190 150

mq̃L 1220 1170

mũR 1170 1130

md̃R 1065 1120

mt̃1 1070 1050

mt̃2 1180 1150

mg̃ 880 1280

mχ̃0

1

80 165

Tuning 170 55

Table 1: Sample MSSM spectra. All masses are in GeV. The main text gives the definition of

fine-tuning.

flavor-blind way with a messenger scale near 10 TeV. The minimal model with one mes-

senger has four continuous parameters and one discrete parameter, and can give rise to

spectra that are very different from scenarios considered in the literature. These include

“compact” spectra with colored superpartners close in mass to uncolored superpartners, a

feature of the spectrum that may help with SUSY naturalness.
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A. Minimization of the potential

We minimize eq. (2.1) assuming that all couplings are real. It is useful to write the potential

as

V = λ2
S

{

∣

∣

∣

∣

1
2
S +

c〈Fφ〉

λS

∣

∣

∣

∣

2

|S|2 +

(

cS〈Fφ〉

λS

)2 (

1

2cS
S2 + h.c.

)

}

(A.1)
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and use units where cS〈Fφ〉/λS = 1. We see that the phase structure is completely deter-

mined by the dimensionless parameter

ξ =
1

cS
. (A.2)

Writing

〈S〉 = seiθ, (A.3)

where s and θ are real, we have

V

λ2
S

= (1 + ξ cos 2θ)s2 + s3 cos θ + 1
4
s4. (A.4)

This is stationary in θ for

s = 0 or sin θ = 0 or cos θ = −
s

4ξ
. (A.5)

We consider these cases one at a time.

The case sin θ = 0 is equivalent to 〈S〉 = s = real. In that case, we find stationary

points

s = s± = 1
2

[

−3 ±
√

1 − 8ξ
]

. (A.6)

Consistency therefore requires ξ < 1
8
. It is easy to check that

V (s−) < V (s+), V (0) for ξ < 0, (A.7)

V (0) < V (s−), V (s+) for 0 < ξ < 1
8
. (A.8)

It remains only to consider the third condition in eq. (A.5). In this case, the stationary

points are

s = s̃± = ±2

√

ξ(ξ − 1)

2ξ − 1
. (A.9)

Reality of s and | cos θ| ≤ 1 are satisfied only if

ξ ≥ 0. (A.10)

We have V (s̃+) = V (s̃−), as we expect since CP is spontaneously broken. We can check

that

V (0) < V (s̃±) for ξ < 1, (A.11)

V (s̃±) < V (0) for ξ > 1. (A.12)

We conclude that

〈S〉 =







s− ξ < 0

0 0 < ξ < 1

s̃±eiθ± ξ > 1,

(A.13)

where

cos θ± = ∓

√

ξ − 1

4ξ(2ξ − 1)
. (A.14)

Restoring the units, we obtain the formulas used in the main text.
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B. Formulas for soft masses

In this appendix, we give some explicit one-loop formulas for SUSY breaking masses. The

beta functions for the MSSM gauge couplings with N2 doublets and N3 triplets are

βi =
bi

16π2
g3
i , (B.1)

where

b3 = −3 + N3, (B.2)

b2 = 1 + N2, (B.3)

b1 = 11 + N2 + 2
3
N3. (B.4)

The one-loop anomalous dimensions are

γQ3 =
1

16π2

[

16

3
g2
3 + 3g2

2 +
1

9
g2
1 − 2y2

t

]

, (B.5)

γu3 =
1

16π2

[

16

3
g2
3 +

16

9
g2
1 − 4y2

t

]

, (B.6)

γd3 =
1

16π2

[

16

3
g2
3 +

4

9
g2
1

]

, (B.7)

γL =
1

16π2

[

3g2
2 + g2

1

]

, (B.8)

γe =
1

16π2

[

4g2
1

]

, (B.9)

γHu =
1

16π2

[

3g2
2 + g2

1 − 6y2
t

]

, (B.10)

γHd =
1

16π2

[

3g2
2 + g2

1

]

, (B.11)

For the quark fields of the first and second generation, the top Yukawa coupling con-

tribution should be dropped. We do not include the other Yukawa couplings, since they

are negligible for small tan β. The beta function for the top Yukawa coupling is

βyt =
yt

16π2

[

6y2
t −

16

3
g2
3 − 3g2

2 −
13

9
g2
1

]

. (B.12)

These formulas can be used to compute the MSSM soft masses using eqs. (2.19)–(2.22)

in the main text. In the one-loop approximation, the contributions from the doublet and

triplet messengers just add, and we obtain e.g.

m2

Q̃,AMSB
=

1

2

〈Fφ〉
2

(16π2)2

[

16g4
3 − 3g4

2 −
11

9
g4
1 + 2yt(16π

2βyt
)

]

, (B.13)

∆m2

Q̃
=

1

2

〈Fφ〉
2

(16π2)2

[

r3(r3 + 2)N3

(

16

3
g4
3 +

2

27
g4
1

)

+r2(r2 + 2)N2

(

3g4
2 +

1

9
g4
1

)]

, (B.14)
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m2
ũR,AMSB =

1

2

〈Fφ〉
2

(16π2)2

[

16g4
3 −

176

9
g4
1 + 4yt(16π

2βyt
)

]

, (B.15)

∆m2
ũR

=
1

2

〈Fφ〉
2

(16π2)2

[

16

3
g4
3r3(r3 + 2)N3

+
16

9
g4
1

(

2

3
r3(r3 + 2)N3 + r2(r2 + 2)N2

)]

, (B.16)

m2

d̃R,AMSB
=

1

2

〈Fφ〉
2

(16π2)2

[

16g4
3 −

44

9
g4
1

]

, (B.17)

∆m2

d̃R

=
1

2

〈Fφ〉
2

(16π2)2

[

16

3
g4
3r3(r3 + 2)N3

+
4

9
g4
1

(

2

3
r3(r3 + 2)N3 + r2(r2 + 2)N2

)]

, (B.18)

m2

L̃,AMSB
=

1

2

〈Fφ〉
2

(16π2)2
[

−3g4
2 − 11g4

1

]

, (B.19)

∆m2

L̃
=

1

2

〈Fφ〉
2

(16π2)2
[

3g4
2r2(r2 + 2)N2

+g4
1

(

2

3
r3(r3 + 2)N3 + r2(r2 + 2)N2

)]

, (B.20)

m2
ẽR,AMSB =

1

2

〈Fφ〉
2

(16π2)2
[

−44g4
1

]

, (B.21)

∆m2
ẽR

=
1

2

〈Fφ〉
2

(16π2)2

[

4g4
1

(

2

3
r3(r3 + 2)N3 + r2(r2 + 2)N2

)]

, (B.22)

m2
Hu,AMSB =

1

2

〈Fφ〉
2

(16π2)2
[

−3g4
2 − 11g4

1 + 6yt(16π
2βyt

)
]

, (B.23)

∆m2
Hu

=
1

2

〈Fφ〉
2

(16π2)2

[

3g4
2r2(r2 + 2)N2+g4

1

(

2

3
r3(r3+2)N3+r2(r2+2)N2

)]

, (B.24)

m2
Hd,AMSB =

1

2

〈Fφ〉
2

(16π2)2
[

−3g4
2 − 11g4

1

]

, (B.25)

∆m2
Hd

=
1

2

〈Fφ〉
2

(16π2)2

[

3g4
2r2(r2 + 2)N2+g4

1

(

2

3
r3(r3+2)N3+r2(r2+2)N2

)]

. (B.26)

For the squarks of the first and second generation, we drop the top Yukawa coupling

contribution.

The gaugino masses are given by

mλ1
=

〈Fφ〉

16π2

(

−11 +
2

3
r3N3 + r2N2

)

, (B.27)

mλ2
=

〈Fφ〉

16π2
(−1 + r2N2) , (B.28)

mλ3
=

〈Fφ〉

16π2
(3 + r3N3) , (B.29)
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where the first term in the parenthesis is the AMSB contribution while the remaining terms

are contributions from the doublet and triplet messengers.
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